
Historical Introduction 

Our immersion in the present state of physics makes it hard for us to 
understand the difficulties of physicists even a few years ago, or to profit 
from their experience. At the same time, a knowledge of our history is a 
mixed blessing - it can stand in the way of the logical reconstruction of 
physical theory that seems to be continually necessary. 

I have tried in this book to present the quantum theory of fields in 
a logical manner, emphasizing the deductive trail that ascends from the 
physical principles of special relativity and quantum mechanics. This 
approach necessarily draws me away from the order in which the subject 
in fact developed. To take one example, it is historically correct that 
quantum field theory grew in part out of a study of relativistic wave 
equations, including the Maxwell, Klein-Gordon, and Dirac equations. 
For this reason it is natural that courses and treatises on quantum field 
theory introduce these wave equations early, and give them great weight. 
Nevertheless, it has long seemed to me that a much better starting point is 
Wigner's definition of particles as represen tations of the in homogeneous 
Lorentz group, even though this work was not published until 1939 and 
did not have a great impact for many years after. In this book we start 
with particles and get to the wave equations later. 

This is not to say that particles are necessarily more fundamental than 
fields. For many years after 1950 it was generally assumed that the 
laws of nature take the form of a quantum theory of fields. I start 
with particles in this book, not because they are more fundamental, but 
because what we know about particles is more certain, more directly 
derivable from the principles of quantum mechanics and relativity. If it 
turned out that some physical system could not be described by a quantum 
field theory, it would be a sensation; if it turned out that the system did 
not obey the rules of quantum mechanics and relativity, it would be a 
cataclysm. 

In fact, lately there has been a reaction against looking at quantum 
field theory as fundamental. The underlying theory might not be a theory 
of fields or particles, but perhaps of something quite different, like strings. 
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From this point of view, quantum electrodynamics and the other quantum 
field theories of which we are so proud are mere 'effective field theories,' 
low-energy approximations to a more fundamental theory. The reason that 
our field theories work so well is not that they are fundamental truths, 
but that any relativistic quantum theory will look like a field theory when 
applied to particles at sufficiently low energy. On this basis, if we want to 
know why quantum field theories are the way they are, we have to start 
with particles, 

13ut we do not want to pay the price of altogether forgetting our past. 
This chapter will therefore present the history of quantum field theory 
from earliest times to 1949, when it finally assumed its modern form. In 
the remainder of the book I will try to keep history from intruding on 
physics. 

One problem that I found in writing this chapter is that the history of 
quantum field theory is from the beginning inextricably entangled with 
the history of quantum mechanics itself, Thus, the reader who is familiar 
with the history of quantum mechanics may find some material here that 
he or she already knows, especially in the first section, where I discuss the 
early attempts to put together quantum mechanics with special relativity. 
In this case I can only suggest that the reader should skip on to the less 
familiar parts. 

On the other hand, readers who have no prior familiarity with quantum 
field theory may find parts of this chapter too brief to be altogether clear. 
I urge such readers not to worry. This chapter i s  not intended as a 
self-contained introduction to quantum field theory, and is not needed as 
a basis for the rest of the book. Some readers may even prefer to start 
with the next chapter, and come back to the history later. However, for 
many readers the history of quantum field theory should serve as a good 
introduction to quantum field theory itself. 

I should add that this chapter is not intended as an original work 
of historical scholarship. T have based it on books and articles by real 
historians, plus some historical reminiscences and original physics art ides 
that I have read. Most of these are listed in the bibliography given at the 
end of this chapter, and in the list of references. The reader who wants 
to go more deeply into historical matters is urged to consult these listed 
works. 

A word about notation. In order to keep some of the flavor of past 
times, in this chapter I will show explicit factors of ti and c (and even 
h), but in order to facilitate comparison with modem physics literature, 
I will use the more modern rutionalized electrostatic units for charge, so 
that the fine structure constant cr 2: 1 / 137 is e2/4xtac. In subsequent 
chapters I will mostly use the 'natural' system of units, simply setting 
h = c = l .  
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1.1 Relativistic Wave Mechanics 

Wave mechanics started out as relativistic wave mechanics. Indeed, as 
we shall see, the founders of wave mechanics, Louis de Broglie and 
Erwin Schrudinger, took a good deal of their inspiration from special 
relativity. It was only later that it became generally clear that relativistic 
wave mechanics, in the sense o f  a relativistic quantum theory of a fixed 
number of particles, is an impossibility. Thus, despite its many successes, 
relativistic wave mechanics was ultimately to give way to quantum field 
theory. Nevertheless, relativistic wave mechanics survived as an important 
element in the formal apparatus of quantum field theory, and it posed a 
challenge to field theory, to reproduce its successes. 

The possibility that material particles can like photons be described in 
terms of waves was first suggested1 in 1923 by Louis de Broglie. Apart 
from the analogy with radiation, the chief clue was Lorentz invariance: if 
particles are described by a wave whose phase at position x and time t 
is of the form ~ X ( K  x - v t ) ,  and if this phase is to be Lorentz invariant, 
then the vector PE and the frequency t7 must transform like x and #, and 
hence like p and E. In order for this to be possible K and v must have the 
same velocity dependence as p and E,  and therefore must be proportional 
to them, with the same constant of proportionality. For photons, one had 
the Einstein relation E = hv, so it was natural to assume that, for material 
particles, 

just as for photons. The group velocity 8 v / i k  of the wave then turns 
out to equal the particle velocity, so wave packets just keep up with the 
particle they represent. 

By assuming that any closed orbit contains an integral number of 
particle wavelengths A = l/lul, de Broglie was able to derive the old 
quantization conditions of Niels Bohr and Arnold Sommerfeld, which 
though quite mysterious had worked well in accounting for atomic spectra. 
Also, both de Broglie and Walter ~ l s a s se6  suggested that de Broglie's 
wave theory could be tested by looking for interference effects in the 
scattering of electrons from crystals; such effects were established a few 
years later by Clinton Joseph Davisson and Lester H. ~ e r m e r . ~  However, 
it was still unclear how the de Broglie relations (1.1.1) should be modified 
for non-free particles, as for instance for an electron in a general Coulomb 
field. 

Wave mechanics was by-passed in the next step in the history of 
quantum mechanics, the development of matrix mechanics4 by Werner 
Heisenberg, Max Born, Pascual Jordan and Wolfgang Pauli in the years 
1925-1926. At least part of the inspiration for matrix mechanics was the 
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insistence that the theory should involve only observables, such as the 
energy levels, or emission and absorption rates. Heisenberg's 1925 paper 
opens with the manifesto: 'The present paper seeks to establish a basis 
for theoretical quantum mechanics founded exclusively upon rdationships 
between quantities that in principle are observable.' This sort of positivism 
was to reemerge at various times in the history of quantum field theory, 
as for instance in the introduction of the S-matrix by John Wheeler and 
Heisenberg (see Chapter 3) and in the revival of dispersion theory in the 
1950s (see Chapter 101, though modern quantum field theory is very far 
from this ideaI. It would take us too far from our subject to describe 
matrix mechanics in any detail here. 

As everyone knows, wave mechanics was revived by Erwin SchrBdinger. 
In his 1926 series of papers,5 the familiar non-relativistic wave equation 
is suggested first, and then used to rederive the results of matrix mechan- 
ics. Only later, in the sixth section of the fourth paper, is a relativistic 
wave equation offered. According to ~ i r ac ,6  the history is actually quite 
different: Schrijdinger first derived the relativistic equation, then became 
discouraged because it gave the wrong fine structure for hydrogen, and 
then some months later realized that the non-relativistic approximation 
to his relativistic equation was of value even if the relativistic equation 
itself was incorrect! By the time that Schrodinger came to publish his 
relativistic wave equation, it had already been independently rediscovered 
by Oskar ~ l e i n ~  and Walter   or don,^ and for this reason it is usually 
called the 'Klein-Gordon equation.' 

Schriidinger's relativistic wave equation was derived by noting first 
that, for a 'Lorentz electron' of mass m and charge e in an externaI vector 
potential A and Coulomb potential #, the Hamiltonian I.I and momentum 
p are related by* 

For a free particle described by a plane wave exp { 2 n i ( ~  x - v t ) } ,  the de 
Broglie relations (1.  I . I )  can be obtained by the identifications 

where P1 is the convenient symbol (introduced later by Dirac) for h/2nr. 
By an admittedly formal analogy, Schrodinger guessed that an electron 
in the external fields A, 4 would be described by a wave function y(x,t) 
satisfying the equation obtained by making the same replacements in 

This is Lorentz invariant, because the quantities A and # havc the same Lorentz trmsfarmation 
p r q x r h  as cp and fi. SEhrijdinger actually wrote H and p in terms of partial derivatives of an 
action function, but this makes no difference to our present discussion. 
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In particular, for the stationary states of hydrogen we have A = 0 and 
4 = e/4nr, and y has the time-dependence exp(-iEt/A), so (1.1.4) becomes 

Solutions satisfying reasonable boundary conditions can be found for the 
energy valuesg 

where a = e2/4dic is the 'fine structure constant,' roughly 1/137; n is a 
positive-definite integer, and t ,  the orbital angular momentum in units of 
A, is an integer with 0 I G 5 n - 1. The a2 term gave good agreement 
with the gross features of the hydrogen spectrum (the Lyman, Balmer, 
etc. series) and, according to ~i r ac ,6  it was this agreement that led 
Schriidinger eventually to develop his non-relativistic wave equation. On 
the other hand, the a4 term gave a fine structure in disagreement with 
existing accurate measurements of Friedrich ~aschen . ' ~  

It is instructive here to compare Schriidinger's result with that of Arnold 
~arnmerfeld,'~- obtained using the rules of the old quantum theory: 

where rn is the electron mass. Here k is an integer between 1 and n, which 
in Sommerfeld's theory is given in terms of the orbital angular momentum 
Cti as k = t + 1. This gave a fine structure splitting in agreement with 
experiment: for instance, for n = 2 Eq. (1.1.7) gves two levels (k = 1 
and k = 21, split by the observed amount d m c 2 / 3 2 ,  or 4.53 x lop5 eV. In 
contrast, Schrodinger's result (1.1.6) gives an n = 2 fine structure splitting 
a4mc2/12, considerably larger than observed. 

Schrijdinger correctly recognized that the source of this discrepancy 
was his neglect of the spin of the electron. The splitting of atomic 
energy levels by non-inverse-square electric fields in alkali atoms and by 
weak external magnetic fields (the so-called anomalous Zeeman effect) 
had revealed a multiplicity of states larger than could be accounted for 
by the Bohr-Sommerfeld theory; this led George Uhlenbeck and Samuel 
~oudsmit"  in 1925 to suggest that the electron has an intrinsic angular 
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momentum h/2. Also, the magnitude of the Zeeman splittingI2 allowed 
them to estimate further that the electron has a magnetic moment 

It was clear that the electron's spin would be coupled to its orbital 
angular momentum, so that Schrijdinger's relativistic equation should not 
be expected to give the correct fine structure splitting. 

Indeed, by 1927 several authors13 had been able to show that the 
spin-orbit coupling was able to account for the discrepancy between Sch- 
rodinger's result (1.1.6) and experiment. There are really two effects here: 
one is a direct coupling between the magnetic moment (1.1.8) and the 
magnetic field felt by the electron as it moves through the electrostatic 
field of the atom; the other i s  the relativistic 'Thomas precession' caused 
{even in the absence of a magnetic moment) by the circular motion of 
the spinning electron.14 Together, these two effects were found to lift the 
level with total angular momentum j = P + to the energy (1.1.7) given 

1 by Sommerfeld for k = f + 1 = j + f, while the level with j = k - was 
lowered to the value given by Sommerfeld for k = C = j + 4. Thus the 
energy was found to depend only on n and j, but not separately on t; 

By accident Sommerfeld's theory had gven the correct magnitude of the 
splitting in hydrogen ( j  + like k runs over integer values from 1 to n) 
though it was wrong as to the assignment of orbital angular momentum 
values G to these various levels. In addition, the multiplicity of the fine 
structure levels in hydrogen was now predicted to be 2 for j = f and 
2(2j + 1) for j > f (corresponding to 6 values j f 1, in agreement with 
experiment. 

Despite these successes, there still was not a thorough relativistic theory 
which incorporated the electron's spin from the beginning. Such a theory 
was discovered in 1928 by Paul Dirac. However, he did not set out 
simply to make a relativistic theory of the spinning electron; instead, he 
approached the problem by posing a question that would today seem 
very strange. At the begnning of his 1928 he asks 'why Nature 
should have chosen this particular model for the electron, instead of 
being satisfied with the point charge.' To us today, this question is like 
asking why bacteria have only one cell; having spin fi/2 is just one of 
the properties that define a particle as an electron, rather than one of the 
many other types of particles with various spins that are known today. 
However, in 1928 it was possible to believe that all matter consisted 
of electrons, and perhaps something similar with positive charge in the 
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atomic nucleus. Thus, in the spirit of the times in which it was asked, 
Dirac's question can be restated ; 'Why do the fundamental constituents 
of matter have to have spin h/2? 

For Dirac, the key to this question was the requirement that probabilities 
must be positive. It was known16 that the probability density for the non- 
relativistic Schriidinger equation is lljl 1 2 ,  and that this satisfies a continuity 
equation of the form 

so the space-integral of l V ? l 2  is time-independent. On the other hand, 
the only probability density p and current J, which can be formed from 
solutions of the relativistic Schrijdinger equation and which satisfy a 
conservation law, 

are of the form 

with N an arbitrary constant. It is not possible to identify p as the 
probability density, because (with or without an external potential 4) p 
does not have definite sign. To quote Dirac's  reminiscence^'^ about this 
problem 

i remember once when I was in Copenhagen, that Bohr 
asked me what T was working on and I told him I was trying 
to get a satisfactory relativistic theory of the electron, and Bohr 
said 'But Klein and Gordon have already done that!' That 
answer first rather disturbed me. Bohr seemed quite satisfied 
by Klein's solution, but I was not because of the negative 
probabilities that i t  led to. I just kept on with it, worrying about 
getting a theory which would have only positive probabilities. 

According to George ~ a r n o w , ' ~  Dirac found the answer to this problem 
on an evening in 1928 while staring into a fireplace at St John's College, 
Cambridge. He realized that the reason that the Klein-Gordon (or 
relativistic Schriidinger) equation can give negative probabilities is that 
the p in the conservation equation (1.1.10) involves a time-derivative of the 
wave function. This in turn happens because the wave function satisfies 
a differential equation of s ~ c n n d  order in the time. The problem therefore 
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was to replace this wave equation with another one of first order in time 
derivatives, like the non-relativistic SchriSdinger equation. 

Suppose the electron wave function is a multi-component quantity y,(x), 
which satisfies a wave equation of the form, 

where 2 is some matrix function of space derivatives. In order to have a 
chance at a Lorentz-invariant theory, we must suppose that because the 
equation is linear in time-derivatives, it is also linear in space-derivatives, 
so that %' takes the form: 

where q, ar2, a ~ ,  and a4 are constant matrices. From (1.1.13) we can derive 
the second-order equation 

{The summation convention is in force here; a' and j run over the values 
1, 2, 3, or x, y,  2.) But this must agree with the free-field form of the 
relativistic Schriidinger equation (1.1.4), which just expresses the relativistic 
relation between momentum and energy. Therefore, the matrices a and a4 
must satisfy the relations 

where J i j  is the Kronecker delta (unity for i = j ;  zero for i f j )  and 1 is 
the unit matrix. Dirac found a set of 4 x 4 matrices which satisfy these 
relations 
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To show that this formalism is Lorentz-invariant, Dirac multiplied 
Eq. (1.1.13) on the left with ad, so that it could be put in the form 

where 

(The Greek indices p, v ,  etc. will now run over the values 1, 2, 3, 0, with 
x0 = ct. Dirac used xq = k t ,  and correspondingly y4 = a4.) The matrices 
y" satisfy the anticornmutation relations 

Dirac noted that these anticommutation relations are Lorentz-invariant, 
in the sense that  they are also satisfied by the matrices AjL,,yv, where A is 
any Lorentz transformation. He concluded from this that Ali,,y' must be 
related to y f l  by a similarity transformation : 

It follows that the wave equation is invariant if, under a Lorentz transfor- 
mation x p  + N , x V ,  the wave function undergoes the matrix transforma- 
tion ly -P S(A)y. (These matters are discussed more fully, from a rather 
different point of view, in Chapter 5 . )  

To study the behavior of electrons in an arbitrary external electromag- 
netic field, Dirac followed the 'usual procedure' of making the replacements 

as in Eq. (1.1.4). The wave equation j1.1.13) then takes the form 

Dirac used this equation to show that in a central field, the conservation 
of angular momentum takes the form 

where X is the matrix differential operator (1.1.14) and u is the 4 x 4 
version of the spin matrix introduced earlier by paulilg 
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Since each component of CJ has eigenvalues +I, the presence of the extra 
term in (1.1.24) shows that the electron has intrinsic angular momentum 
h/2.  

Dirac also iterated Eq. (1. lZ), obtaining a second-order equation, 
which turned out to have just the same form as the Klein-Gordon equation 
(1.1.4) except for the presence on the right-hand-side of  two additional 
terms 

For a slowly moving electron, the first term dominates, and represents a 
magnetic moment in agreement with the value ( 1 . 1  .a) found by Goudsmit 
and ~hbnbeck."  As Dirac recognized, this magnetic moment, together 
with the relativistic nature of the theory, guaranteed that this theory 
would give a fine structure splitting in agreement {to order a4mc2) with 
that found by Heisenberg, Jordan, and Charles G. l3arwin.I3 A little later, 
an 'exact' formula for the hydrogen energy levels in Dirac's theory was 
derived by I3arwin2O and ~ o r d a n ~ l  

The first three terms of a power series expansion in a2 agree with the 
approximate result (1 .U). 

This theory achieved Dirac's primary aim: a relativistic formalism with 
positive 

with 

so that 
density, 
another 

For a 

probabilities. From (1.1.13) we can derive a continuity equation 

the positive quantity l y r 1 2  can be interpreted as a probability 
with constant total probability J lp12d3x. However, there was 
difficulty which Dirac was not immediately able to resolve. 
given momentum p, the wave equation (1.1.13) has four solutions 

of the plane wave form 

Two solutions with E = +dp2c2 + m2c4 correspond to the two spin states 
of an electron with Jz = +h/2. The other two solutions have E = 
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- v'W, and no obvious physical interpretation. As Dirac pointed 
out, this problem arises also for the relativistic Schriidinger equation : for 
each p, there are two solutions of the form (1.1.30), one with positive E 
and one with negative E. 

Of course, even in classical physics, the relativistic relation 
E~ = p2c2 + m2c4 has two solutions, E = kdp2c2 + m2c4 . However, 
in classical physics we can simply assume that the only physical particles 
are those with positive E .  Since the positive solutions have E > me2 and 
the negative ones have E < -mc2, there is a finite gap between them, 
and no continuous process can take a particle from positive to negative 
energy. 

The problem of negative energies is much more troublesome in rela- 
tivistic quantum mechanics. As Dirac pointed out in his 1928 paper,15 the 
interaction of electrons with radiation can produce transitions in which a 
positive-energy electron falls into a negative-energy state, with the energy 
carried off by two or more photons. Why then is matter stable? 
In 1930 Dirac offered a remarkable solution.22 Dirac's proposal was 

based on the exclusion principle, so a few words about the history of this 
principle are in order here. 
The periodic table of the elements and the systematics of X-ray spec- 

troscopy had together by 1924 revealed a pattern in the population of 
atomic energy levels by electrons:23 The maximum number N ,  of electrons 
in a shell characterized by principal quantum number n is given by twice 
the number of orbital states with that n 

Wolfgang ~ a u l i ~ ~  in 1925 suggested that this pattern could be understood if 
N ,  is the total number of possible states in the nth shell, and if in addition 
there is some mysterious 'exclusion principle' which forbids more than one 
electron from occupying the same state. He explained the puzzling factor 
2 in (1.1.31) as due to a 'peculiar, classically non-describable duplexity' of 
the electron states, and as we have seen this was understood a little later 
as due to the spin of the electron." The exclusion principle answered a 
question that had remained obscure in the old atomic theory of Bohr and 
Sommerfeld: why do not all the electrons in heavy atoms fall down into 
the shell of lowest energy? Subsequently Pauli's exclusion principle was 
formalized by a number of authors25 as the requirement that the wave 
function of a multi-electron system is antisymmetric in the coordinates, 
orbital and spin, of all the electrons. This principle was incorporated into 
statistical mechanics by Enrico ~ e r m i * ~  and ~ i r a c , ~ '  and for this reason 
particles obeying the exclusion principle are generally called 'fermions,' 



just as particles like photons for which the wave function is symmetric 
and which obey the statistics o f  Bose and Einstein are called 'bosons.' The 
exclusion principle has played a fundamental role in the theory of metals, 
white dwarf and neutron stars, etc., as well as in chemistry and atomic 
physics, but a discussion of these matters would take us too far afield 
here. 

Dirac's proposal was that the positive energy electrons cannot fall down 
into negative energy states because 'all the states of negative energy are 
occupied except perhaps a few of small velocity.' The few vacant states, 
or 'holes,' in the sea of negative energy electrons behave like particles with 
opposite quantum numbers: positive energy and positive charge. The only 
particle with positive charge that was known at that time was the proton, 
and as Dirac later recalled,27a 'the whole climate of opinion at that time 
was against new particles' so Dirac identified his holes as protons; in fact, 
the title of his 1930 article22 was 'A Theory of Electrons and Protons.' 

The hole theory faced a number of immediate difficulties. One obvi- 
ous problem was raised by the infinite charge density of the ubiquitous 
nega the-energy electrons : where is their electric field? Dirac proposed to 
reinterpret the charge density appearing in Maxwell's equations as 'the 
departure from the normal state of electrification of the world.' An- 
other problem has to do with the huge dissimilarity between the observed 
masses and interactions of the electrons and protons. Dirac hoped that 
Coulomb interactions between electrons would somehow account for these 
differences but Hermann ~ e y 1 ~ ~  showed that the hole theory was in fact 
entirely symmetric between negative and positive charge. Finally, ~ i r a c "  
predicted the existence of an electron-proton annihilation process in which 
a positive-energy electron meets a hole in the sea of negative-energy elec- 
trons and falls down into the unoccupied level, emitting a pair of gamma 
ray photons. By itself this would not have created difficulties for the hole 
theory; it was even hoped by some that this would provide an explana- 
tion, then lacking, of the energy source of the stars. However, it was 
soon pointed out29 by Julius Robert Oppenheimer and Igor Tamm that 
electron-proton annihilation in atoms would take place at much too fast 
a rate to be consistent with the observed stability of ordinary matter. For 
these reasons, by 193 1 Dirac had changed his mind, and decided that the 
holes would have to appear not as protons but as a new sort of positively 
charged particle, of the same mass as the electron.2gu 

The second and third of these problems were eliminated by the discovery 
of the positron by Carl D. ~ n d e r s o n , ~ ~  who apparently did not know of 
this prediction by Dirac. On August 2, 1932, a peculiar cosmic ray track 
was observed in a Wilson cloud chamber subjected to a 15 kG magnetic 
field. The track was observed to curve in a direction that would be 
expected for a pnsitiudy charged particle, and get its range was at least 
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ten times greater than the expected range of a proton! Both the range 
and the specific ionization of the track were consistent with the hypothesis 
that this was a new particle which differs from the electron only in the 
sign of its charge, as would be expected for one of Dirac's holes. (This 
discovery had been made earlier by P.M.S. Blackett, but not immediately 
published by him. Anderson quotes press reports of evidence for light 
positive particles in cosmic ray tracks, obtained by Blackett and Giuseppe 
Occhialini.) Thus it appeared that Dirac was wrong only in his original 
identification of the hole with the proton. 

The discovery of the more-or-less predicted positron, together with the 
earlier successes of the Dirac equation in accounting for the magnetic 
moment of the electron and the fine structure of hydrogen, gave Dirac's 
theory a prestige that it has held for over six decades. However, although 
there seems little doubt that Dirac's theory will survive in some form in 
any future physical theory, there are serious reasons for being dissatisfied 
with its original rationale: 

(i) Dirac's analysis of the problem of negative probabilities in Sch- 
rodinger's relativistic wave equation would seem to rule out the existence 
of any particle of zero spin. Yet even in the 1920s particles of zero spin 
were known - for instance, the hydrogen atom in its ground state, and 
the helium nucleus. Of course, it could be argued that hydrogen atoms 
and alpha particles are not elementary, and therefore do not need to 
be described by a relativistic wave equation, but it was not (and still is 
not) clear how the idea of elementarity is incorporated in the formalism 
of relativistic quantum mechanics. Today we know of a large number 
of spin zero particles - z mesons, K mesons, and so on -- that are 
no less elementary than the proton and neutron. We also know of spin 
one particles - the W* and Z O  - which seem as elementary as the 
electron or any other particle. Further, apart from effects of the strong 
interactions, we would today calculate the fine structure of 'mesonic 
atoms,' consisting of a spinless negative z or K meson bound to an 
atomic nucleus, from the stationary solutions of the relativistic Klein- 
Gordon-Schrodinger equation! Thus, it is difficult to agree that there is 
anything fundamentally wrong with the relativistic equation for zero spin 
that forced the development of the Dirac equation - the problem Simply 
is that the electron happens to have spin A/2, not zero. 
(ii) As far as we now know, for every kind of particle there is an 
'antiparticle' with the same mass and opposite charge. (Some purely 
neutral particles, such as the photon, are their own antiparticles.) But 
how can we interpret the antiparticles of charged bosons, such as the 
a' mesons or W* particles, as holes in a sea of negative energy states? 
For particles quantized according to the rules of Bose-Einstein statistics, 
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there is no exclusion principle, and hence nothing to keep positive-energy 
particles from falling down into the negative-energy states, occupied or 
not. And if the hole theory does not work for bosonic antiparticles, why 
should we believe it for ferrnions'? 1 asked Dirac in 1972 how he then felt 
about this point; he told me that he did not regard bosons like the pion 
or W &  as 'important.' In a lecture"" a few years later, Dirac referred 
to the fact that for bosons 'we no longer have the picture of a vacuum 
with negative energy states filled up: and remarked that in this case 'the 
whole theory becomes more complicated.' The next section will show 
how the development of quantum field theory made the interpretation of 
antiparticles as holes unnecessary, even though unfortunately it lingers 
on in many textbooks. To quote Julian S c h ~ i n g e r , ~ ~ ~  'The picture of an 
infinite sea of negative energy electrons is now best regarded as a historical 
curiosity, and forgotten.' 

jiii) One of the great successes of the Dirac theory was its correct 
prediction of the magnetic moment of the electron. This was particularly 
striking, as the magnetic moment (1.1.8) is twice as large as would be 
expected for the orbital motion of a charged point particle with angular 
momentum h / 2 ;  this factor of 2 had remained mysterious until Dirac's 
theory. However, there is really nothing in Dirac's line of argument that 
leads unequivocally to this particular value for the magnetic moment. At 
the point where we brought electric and magnetic fields into the wave 
equation (1.1.23), we could just as well have added a 'Pauli term'31 

with arbitrary coefficient K .  (Here F,,, is the usual electromagnetic field 
strength tensor, with F ' ~  = B3, FOI = E l ,  etc.) This term could be 
obtained by first adding a term to the free-field equations proportional 
to pi', yv](d2/axh?xY)W, which of course equals zero, and then making 
the substitutions (1.1.22) as before. A more modern approach would be 
simply to remark that the term (1.1.32) is consistent with a11 accepted 
invariance principles, including Loren tz invariance and gauge invariance, 
and so there is no reason why such a term should not be included in the 
field equations. (See Section 12.3.) This term would give an additional 
contribution proportional to K to the magnetic moment of the electron, so 
apart from the possible demand for a purely formal simplicity, there was 
no reason to expect any particular value for the magnetic moment of the 
electron in Dirac's theory. 

As we shall see in this book, these problems were all eventually to be 
solved (or at  least clarified) through the development of quantum field 
theory. 



1.2 The Birth of Quantum Field Theory 

1.2 The Birth of Quantum Field Theory 

The photon is the only particle that was known as a field before it was 
detected as a particle. Thus it is natural that the formalism of quantum 
field theory should have been developed in the first instance in connection 
with radiation and only later applied to other particles and fields. 

In 1926, in one o f  the central papers on matrix mechanics, Born, 
Heisenberg, and ~ o r d a n ~ ~  applied their new methods to the free radiation 
field. For simplicity, t bey ignored the polarization of electromagnetic 
waves and worked in one space dimension, with coordinate x running 
from 0 to L; the radiation field u{x, t) if constrained to vanish at these 
endpoints thus has the same behavior as the displacement of a string with 
ends fixed at x = 0 and x = L. By analogy with either the case or a string 
or the full electromagnetic field, the Hamiltonian was taken to have the 
form 

In order to reduce this expression to a sum of squares, the field zd was 
expressed as a sum o f  Fourier components with u = 0 at bath x = 0 and 
x = L :  

CC 

U ( X ,  t) -- q k ( t )  sin 
k = l  (y) 

so that 

Thus the string or field behaves like sum oC independent harmonic oscilla- 
tors with angular frequencies cok ,  as had been anticipated 20 years earlier 
by Paul ~ h r e n f e s t . ~ ~ "  

In particular, the 'momentum' pk(t) canonically conjugate to q k ( t )  is 
determined, as in particle mechanics, by the condition that if H is expressed 
as a function of the ps and g s, then 

This yields a 'momentum' 
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so the canonical commutation relations may be written 

Also, the time-dependence of qk(r) is governed by the Harniltonian equa- 
tion of motion 

The form of the matrices defined by Eqs. (1.2.6)-(1.2.8) was already 
known to Born, Heisenberg, and Jordan through previous work on the 
harmonic oscillator. The q-matrix is given by - 

with an a timeindependent matrix and al its Hermitian adjoint, satisfying 
the commutation relations 

The rows and columns of these matrices are labelled with a set of positive 
integers nl ,  n2, . . . , one for each normal mode. The matrix elements are 

For a single normal mode, these matrices may be written explicitly as 

It is straightforward to check that (1.2.12) and (1.2.13) do satisfy the 
commutation relations (1.2.10) and (1.2.1 1). 

The physical interpretation of a column vector with integer components 
 PI^, ~ 2 , ; .  . is that it represents a state with nk quanta in each normal mode 
k.  The matrix a k  or a; acting on such a column vector will respectively 

a =  

- 0  0 o . . * -  
0 0 o . . ,  
0 0 o & . .  
0 O 0 O . . .  

- - 

, u t =  

- 0 0 0 0  . . . -  
JT 0 0 0  . . .  
0 0 0  . . .  
0 0 0 .  

. . 

. . 
q .  - 
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lower or raise nr, by one unit, leaving ail nt with G # k unchanged; they 
may therefore be interpreted as operators which annihilate or create one 
quantum in the kth normal mode. In particular, the vector with all nk 
equal to zero represents the vacuum; it is annihilated by any uk. 

This interpretation is further borne out by inspection of the Hamilto- 
nian. Using (1.2.9) and (1.2.10) in (1.2.4) gives 

The Harniltonian is then diagonal in the n-representation 

We see that the energy of the state is just the sum of energies hwk for 
each quantum present in the state, plus an infinite zero-point energy 
ED = En Auk Applied to the radiation field, this formalism justified the 
Bose method of counting radiation states according to the numbers nk of 
quanta in each normal mode. 

Born, Heisenberg, and Jordan used this formalism to derive an expres- 
sion for the r.m.s. energy fluctuations in black-body radiation. (For this 
purpose they actually only used the commutation relations ( 1.2.6)-(1.2.7).) 
However, this approach was soon applied to a more urgent problem, the 
calculation of the rates for spontaneous emission of radiation. 

In  order to appreciate the difficulties here, it is necessary to go back 
in time a bit. In one of the first papers on matrix mechanics, Born and 
~ o r d a n ~ ~  had assumed in effect that an atom, in dropping from a state 
p to a lower state a, would emit radiation just like a classical charged 
oscillator with displacement 

where 

and rp. is the p, u element of the matrix associated with the electron 
position. The energy E of such an oscillator is 

A straightforward classical calculation then gives the radiated power, and 
dividing by the energy hv per photon gives the rate of photon emission 
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However, it was not at all clear why the formulas for emission of radiation 
by a classicai dipole should be taken over in this manner in dealing with 
spontaneous emission. 

A little later a more convincing though even less direct derivation was 
given by ~ i r a c . ~ ~  By considering the behavior of quantized atomic states 
in an oscillating cla.wiual electromagnetic field with energy density per 
frequency interval la at frequency {1.2.17), he was able to derive formulas 
for the rates uB(a + /I> and uB(P + M )  for absorption or induced 
emission : 

(Note that the expression on the right is symmetric between states a 
and /I, because r,p is just ra,'.)   in stein^^ had already shown in 1917 
that the possibility of thermal equilibrium between atoms and black-body 
radiation imposes a relation between the rate A(P + ol) of spontaneous 
emission and the rates uB for induced emission or absorption: 

Using (1.2.20) in this relation immediately yields the Born-Jordan result 
(1.2.19) for the rate of spontaneous emission. Nevertheless, it still seemed 
unsatisfactory that thermodynamic arguments should be needed to derive 
formulas for processes involving a single atom. 

Finally, in 1927 ~ i r a c "  was able to give a thoroughly quantum me- 
chanical treatment of spontaneous emission. The vector potential A(x, l )  
was expanded in normal modes, as in Eq. (1.2,2), and the coefficients were 
shown to satisfy commutation relations like (1.2.6). In  consequence, each 
state of the free radiation field was specified by a set of integers nk, one 
for each normal mode, and the matrix elements of the electromagnetic 
interaction er A took the form of a sum over normal modes, with matrix 
coefficients proportional to the matrices ak and af defined in Eqs  (1.2.10)- 
(1.2.13). The crucial result here is the factor in Eq. (1.2.13); the 
probability for a transition in which the number of photons in a normal 
mode k rises from nk to nk + 1 is proportional to the square of this factor, 
or nk + I .  But in a radiation field with nk photons in a normal mode k ,  
the energy density u per frequency interval is 

so the rate for emission of radiation in normal mode k is proportional to 
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The first term is interpreted as the contribution of induced emission, and 
the second term as the contribution of spontaneous emission. Hence, 
without any appeal to thermodynamics, Dirac could conclude that the 
ratio of the rates d3 for induced emission and A for spontaneous emission 
is given by the Einstein relation, Eq. ( 1.2.2 1). Using his earlier result (1.2.20) 
for B, Dirac was thus able to rederive the Born-Jordan formula33 (1.2.19) 
for spontaneous emission rate A. A little later, similar methods were 
used by Dirac to give a quantum mechanical treatment of the scattering 
of radiation and the lifetime of excited atomic states,36 and by Victor 
Weisskopf and Eugene Wigner to make a detailed study of spectral line 
shapes.'& Dirac in his work was separating the electromagnetic potential 
into a radiation field A and a static Coulomb potential A', in a manner 
which did not preserve the manifest Lorentz and gauge invariance of 
classical electrodynamics. These matters were put on a firmer foundation 
a little later by Enrico ~ermi.'" Many physicists in the 1930s learned 
their quantum electrodynamics from Fermi's 1932 review. 

The use of canonical commutation relations for q and p or a and at 
aIso raised a question as to the Lorentz invariance of the quantized theory. 
Jordan and ~ a u l i ~ ~  in 1928 were able to show that the commutators of 
fields at different spacetime points were in fact Lorentz-invariant. (These 
commutators are calculated in Chapter 5 . )  Somewhat later, Bohr and 
Leon ~ o s e n f e l d 3 ~  used a number of ingenious thought experiments to 
show that these commutation relations express limitations on our ability 
to measure fields at spacetime points separated by time-like intervals. 

It was not long after the successful quantization of the electromagnetic 
field that these techniques were applied to other fields. At first this was 
regarded as a 'second quantization'; the fields to be quantized were the 
wave functions used in one-particle quantum mechanics, such as the Dirac 
wave function of the electron. The first step in this direction seems to 
have been taken in 1927 by Jordan.39 In  1928 an essential element was 
supplied by Jordan and ~ i g n e r . "  They recognized that the Pauli exclusion 
principle prevents the occupation number nk of electrons in any normal 
mode k (counting spin as well as position variables) from taking any values 
other than 0 or 1.  The electron field therefore cannot be expanded as a 
superposition of operators satisfying the commutation relations (1.2. lo), 
(1.2.1 21, because these relations require nk to take all integer values from 
0 to E. Instead, they proposed that the electron field should be expanded 
in a sum of operators at,  al  satisfying the anticommututim relations 

The relations can be satisfied by matrices labelled by a set of integers 



nl, n2, - .  . , one for each normal mode, each integer taking just the values 
zero and one: 

1 n; = 0, ni, = 1, n; = y for j # k 
(ak hi ,ni ,..., q ,n2 ,... 0 otherwise , (1.2.24) 

t 1 4 = 1, nk = O r  n'= nj for j f k 
( a k l ~ l , ~ i  ,..., U,,U~ ,... J 

0 otherwise. (1.2.25) 

For instance, for a single normal mode we have just two rows and two 
columns, corresponding to the values unity and zero of nt and n;  the u 
and at matrices take the form 

The reader may check that (1.2.24) and (1.2,25) do satisfy the anticommu- 
tation relations (1.2.22) and (1.2.23 j. 

The interpretation of a column vector characterized by integers n l ,  nl, , . . 
is that it represents a state with nk quanta in each normal mode k, just as 
for bosons. The difference is, of course, that since each nk takes only the 
values 0 and 1, there can be at most one quantum in each normal mode, 
as required by the Pauli exclusion principle. Again, ak destroys a quantum 
in normal mode k if there is one there already, and otherwise gives zero; 
also, a: creates a quantum in normal made k unless there is one there 
already, in which case it gives zero. Much later it was shown by Fjerz 
and paulia that the choice between commutation and anticommu tation 
relations is dictated solely by the particle's spin: commutators must be 
used for particles with integer spin like the photon, and anti'commutators 
for particles with half-integer spin like the electron. (This will be shown 
in a different way in Chapter 5.) 

The theory of general quantum fields was first laid out in 1929, in a 
pair of comprehensive articles by Weisenberg and ~ a u l i . 4 ~  The starting 
point of their work was the application of the canonical formalism to 
the fields themselves, rather than to the coefficients of the normal modes 
appearing in the fields. Heisenberg and Pauli took the Lagrangian L as 
the space-integral of a local function of fields and spacetime derivatives 
of fields; the field equations were then determined from the principle 
that the action J L d t  should be stationary when the fields are varied; 
and the commutation relations were debermined from the assumption 
that the variational derivative of the Lagrangian with respect to any 
field's time-derivative behaves like a 'momentum' conjugate to that field 
(except that commutation relations become anticommutation relations for 
fermion fields). They also went on to apply this general formalism to the 
electromagnetic and Dirac fields, and explored the various invariance and 
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conservation laws, including the conservation of charge, momentum, and 
energy, and Lorentz and gauge invariance. 

The Heisenberg-Pauli formalism is essentially the same as that described 
in our Chapter 7,  and so for the present we can limit ourselves to a single 
example which will turn out to be useful later in this section. For a free 
complex scalar field @(x) the Lagrangian is taken as 

If we subject $(x) to an infinitesimal variation d$(x), the Lagrangian i s  
changed by the amount 

It is assumed in using the principle of stationary action that the variation 
in the fields should vanish on the boundaries of the spacetime region of 
integration. Thus, in computing the change in the action J Ldr, we can 
immediately integrate by parts, and write 

But this must vanish for any 6 4  and 64t, so 4 must satisfy the familiar 
relativistic wave equation 

and its adjoint. The 'momenta' canonically conjugate to the fields # and 
#f are gven by the variational derivatives of L with respect to d, and $7, 
which we can read off from (1.2.27) as 

These field variables satisfy the usual canonical commutation relations, 
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with a delta function in place of a Kronecker delta 

[nk t), n(y, t)] = [nt(x, t), nt(y, I)] = [ ~ ( x ,  t ) ,  n'(y, t)]  = 0 , (1.2.33) 

[$(% r). $(Y. t )]  = [gt(x, t). $'(y, t)] = [#(x, t) .  $t(y, t)] = 0 . (1.2.34) 

The Hamiltonian here is given (just as in partick mechanics) by the 'sum' 
of all canonical momenta times the time-derivatives of the corresponding 
fields, minus the Lagrangian: 

or, using (1.2.261, (1.2.29), and (1.2.30): 

After the papers by Heisenberg and Pauli one element was still missing 
before quantum field theory could reach its final pre-war form: a solution 
to the problem of the negative-energy states. We saw in the last section 
that in 1930, at just about the time of the Heisenberg-Pauli papers, Dirac 
had proposed that the negative-energy states of the electron were all filled, 
but with only the holes in the negative-energy sea observable, rather than 
the negative-energy electrons themselves. After Dirac's idea was seeming1 y 
confirmed by the discovery of the positron in 1932, his 'hole theory' was 
used to calculate a number of processes to the lowest order of perturbation 
theory, including electron-positron pair production and scattering. 

At the same time, a great deal of work was put into the development 
of a formalism whose Lorentz invariance would be explicit. The most 
influential effort was the 'many-time' formalism of Dirac, Vladimir Fock, 
and Boris ~odolsky?' in which the state vector was represented by a 
wave function depending on the spacetime and spin coordinates of all 
electrons, positive-energy and negative-energy. In this formalism, the total 
number of electrons of either positive or negative energy is conserved; 
for instance, production of an electron-positron pair is described as the 
excitation of a negative-energy electron to a positive-energy state, and the 
annihilation of an electron and positron is described as the corresponding 
deexcitation. This many-time formalism had the advantage of manifest 
Lorentz invariance, but it had a number of disadvantages: In particular, 
there was a profound difference between the treatment of the photon, 
described in terms of a quantized electromagnetic field, and that of the 
electron and positron. Not all physicists felt this to be a disadvantage; 


